igibson.reward_functions package
Submodules
igibson.reward_functions.collision_reward module
-
class
igibson.reward_functions.collision_reward.
CollisionReward
(config) Bases:
igibson.reward_functions.reward_function_base.BaseRewardFunction
Collision reward Penalize robot collision. Typically collision_reward_weight is negative.
-
get_reward
(task, env) Reward is self.collision_reward_weight if there is collision in the last timestep
- Parameters
task – task instance
env – environment instance
- Returns
reward
-
igibson.reward_functions.point_goal_reward module
igibson.reward_functions.potential_reward module
-
class
igibson.reward_functions.potential_reward.
PotentialReward
(config) Bases:
igibson.reward_functions.reward_function_base.BaseRewardFunction
Potential reward Assume task has get_potential implemented; Low potential is preferred (e.g. a common potential for goal-directed task is the distance to goal)
-
get_reward
(task, env) Reward is proportional to the potential difference between the current and previous timestep
- Parameters
task – task instance
env – environment instance
- Returns
reward
-
reset
(task, env) Compute the initial potential after episode reset
- Parameters
task – task instance
env – environment instance
-
igibson.reward_functions.reaching_goal_reward module
igibson.reward_functions.reward_function_base module
-
class
igibson.reward_functions.reward_function_base.
BaseRewardFunction
(config) Bases:
object
Base RewardFunction class Reward-specific reset and get_reward methods are implemented in subclasses
-
abstract
get_reward
(task, env) Compute the reward at the current timestep. Overwritten by subclasses.
- Parameters
task – task instance
env – environment instance
- Returns
reward, info
-
reset
(task, env) Reward function-specific reset
- Parameters
task – task instance
env – environment instance
-
abstract