
RubiksNet: Learnable 3D-Shift for Efficient
Video Action Recognition

(Supplementary Material)

In this supplementary material, we include:

1. Additional Visualizations of our model in Section A1. We include video
visualizations in our overview video (see rubiksnet.stanford.edu).

2. Additional Architecture Details in Section A2 which provides additional
details (e.g. size classes, layout) at the network-level for our architecture.

3. Interpolated Shift Equation Details in Section A3 provides expanded
technical discussion of the 3D shift equations in the main paper.

4. Efficiency Analysis Details in Section A4 provides additional details and
breakdowns at the layer- and operation-level for our architecture to highlight
how our efficiency gains reported in the main paper are rooted in our main
proposed learnable 3D RubiksShift operations.

5. Additional Results in Section A5, including additional results for the main
benchmarks reported in the paper as well as a comparison (verifying consistent
improvement in efficiency-accuracy) on the Kinetics dataset against our
main shift-based action recognition baseline (TSM) from ICCV19.

6. Additional Training Details in Section A6 which provides additional
details (e.g. hyperparameters, learning rate schedule) for training.

7. Code release is available on the project website rubiksnet.stanford.edu.

A1 Additional Visualizations

We include additional visualizations of the learned 3D-shift weights in our sup-
plementary video. In Figure A1, we show an expansion of the layer views from
Figure 6 in the main paper, adding more views of the 3D filters from different
angles.

A2 Architecture Details

We include additional architecture details in Table A1. This table captures the ar-
chitecture layout details for RubiksNet-Large, Medium, Small, Tiny, respectively.
Across all RubiksNet architectures, we follow an overall ResNet block design
style as per prior work [16]. Our spatial shift is designed to be compatible with
transfer from 2D spatial shift pretraining [11,29]. We plan to open source our
implementation, including our PyTorch, PyTorch C++, and CUDA code. Our
RubiksNet architecture primarily relies on the shift operation and (pointwise)
convolution operation for its spatiotemporal modeling. In Sec. A4, we show our ef-
ficiency gains are rooted in our new (generic) RubiksShift Block, consisting of 3D

rubiksnet.stanford.edu
rubiksnet.stanford.edu


2 J. Fan* and S. Buch* et al.

Fig. A1: Expanded visualization of Figure 6 in the main paper, showing different
3D viewpoints of the visualized spatiotemporal RubiksShift. We include further
visualizations in our supplementary video.

learnable shift layers (between the Pointwise Conv/ReLU/BN operations). Our
novel RubiksShift operation requires no spatial or spatiotemporal convolutions
and can jointly learn spatiotemporal 3D shift.

A3 Interpolated Shift Equation Details

In this section, we provide additional discussion for our technical discussion for
interpolated 3D shift. From the main paper, Equation 5 and 6 can be expanded
as follows:

O′c,t,h,w = F̃c,t+γc,h+αc,w+βc

= Z1
c · (1−∆γc) · (1−∆αc) · (1−∆βc)

+ Z2
c ·∆γc · (1−∆αc) · (1−∆βc)

+ Z3
c · (1−∆γc) ·∆αc · (1−∆βc)

+ Z4
c ·∆γc ·∆αc · (1−∆βc)

+ Z5
c · (1−∆γc) · (1−∆αc) ·∆βc

+ Z6
c ·∆γc · (1−∆αc) ·∆βc

+ Z7
c · (1−∆γc) ·∆αc ·∆βc

+ Z8
c ·∆γc ·∆αc ·∆βc



RubiksNet (Supplementary Material) 3

Table A1: RubiksNet Architecture Table, for different size classes (Large, Medium,
Small, Tiny). As described in the main paper, these size classes are grouped to
correspond with TSM. Nc refers to the number of output classes for dataset.
Please refer to Sec. 4 for efficiency analysis on all the size classes and Sec. A4 for
lower-level efficiency analysis.

Group Type
Out Channels Repeat

Stride
L/M/S T L/M/S/T

- Input Block 72 54 1 2

1 RubiksShift Block
72 54

1 1
RubiksShift Block 1 2
RubiksShift Block 2 1

2 RubiksShift Block
144 108

1 2
RubiksShift Block 7/3/3/3 1

3 RubiksShift Block
288 216

1 2
RubiksShift Block 35/22/5/5 1

4 RubiksShift Block
576 432

1 2
RubiksShift Block 2 1

- Avg Pool - - 1 -

- FC - Nc 1 -

where F̃c,t+γc,h+αc,w+βc
is the corresponding interpolated value at position

(t, h, w) of the feature map at channel c after shift and

Z1
c = Fc,t+bγcc,h+bαcc,w+bβcc, Z

2
c = Fc,t+dγce,h+bαcc,w+bβcc,

Z3
c = Fc,t+bγcc,h+dαce,w+bβcc, Z

4
c = Fc,t+dγce,h+dαce,w+bβcc,

Z5
c = Fc,t+bγcc,h+bαcc,w+dβce, Z

6
c = Fc,t+dγce,h+bαcc,w+dβce,

Z7
c = Fc,t+bγcc,h+dαce,w+dβce, Z

8
c = Fc,t+dγce,h+dαce,w+dβce.

with b·c, d·e as denoting floor and ceiling functions, respectively. Z∗c correspond
to the eight nearest integer points around the local neighbourhood at the location
of each shift parameter. These eight points consist of a 23 cube and are used for
trilinear interpolation (evaluated locally in an efficient manner).

We can also show why Equation 6 holds by showing how each dimension
contributes to the final coefficients from a bottom-up approach (composing partial
terms along the way). To begin, we can look at the temporal dimension first. By
the definition of linear interpolation, the interpolated point which lies between
Z1
c and Z2

c is

T 1
c = Z1

c · (1−∆γc) + Z2
c ·∆γc.

Similarly, the interpolated values between {Z3
c , Z

4
c }, {Z5

c , Z
6
c } and {Z7

c , Z
8
c } are:

T 2
c = Z3

c · (1−∆γc) + Z4
c ·∆γc,

T 3
c = Z5

c · (1−∆γc) + Z6
c ·∆γc,

T 4
c = Z7

c · (1−∆γc) + Z8
c ·∆γc , respectively.



4 J. Fan* and S. Buch* et al.

Now that we have accounted for the temporal dimension contributions, we
can account for the contributions from the vertical dimension to our intermediate
values T ∗c . We have the interpolated value in between T 1

c and T 2
c as

H1
c = T 1

c · (1−∆αc) + T 2
c ·∆αc,

and the interpolated point in between T 3
c and T 4

c as

H2
c = T 3

c · (1−∆αc) + T 4
c ·∆αc.

Finally, we account for the linear interpolation for the horizontal dimension, and
get the interpolated contribution between H1

c and H2
c as

W 1
c = H1

c · (1−∆βc) +H2
c ·∆βc.

where W 1
c is the final trilinearly interpolated value. If we expand and write it

using Z∗c , it has the same form as O′c,t,h,w, recovering the product coefficients
described Equation 6.

Finally, we reiterate the point from the main paper that this equation is a for-
malism; in practice we are able to implement the whole operation in CUDA/C++
efficiently with minimal FLOPs overhead (see efficiency analysis in Sec. A4). We
also emphasize that with the budget-constrained attention shift (RubiksShift-AQ),
we can replace some or all of these dimensions (e.g. temporal) with a discrete
integer shift (described in Sec. 4 in the main paper), in which case any remaining
dimensions are interpolated with the lower-dimensional versions of Equation 6.

A4 Efficiency Analysis Details

In this section, we provide additional details and analysis of efficiency of our
models, breaking down the contribution of our 3D RubikShift block from an
operations perspective with respect to traditional 3D Convolution as well as the
recent 2D Convolution + Shift (TSM) block from ICCV 2019. We also provide
runtime analysis of our method.
FLOPs and Parameters Protocol. Our FLOP and parameter computation
procedure aligns with prior work [16] for consistency. In a RubiksShift layer, the
main contributor to the FLOP count is the 1x1 pointwise convolution layers, which
are dramatically less expensive than traditional 2D or 3D conv. The traditional
shift operation itself is considered zero-FLOP, since it can be fused into the
pointwise convolution as one GPU kernel call [29]. Learnable shift incurs small
FLOP/param cost, but otherwise similarly efficient when properly implemented.
Additional Efficiency Analysis. We visualize a full efficiency analysis break-
down of our RubiksShift layer in Figure A2, A3, and A4. For our analysis here,
we control the same input ((T,H,W ) = (8, 112, 112)) and input/output
channels (input and output is fixed to 72 channels for all blocks, so that channel
count does not affect the analysis) for all calculations. Further, all blocks here
are standard blocks with consistent channels throughout the block. Figure A2



RubiksNet (Supplementary Material) 5

shows the total cost comparison; we calculate that a RubiksShift layer has ∼25x
fewer FLOPs/params in contrast with traditional 3D, and ∼8x fewer than TSM
(shift + 2D conv). Figure A3 shows the breakdown by percentage of FLOPs, and
Figure A4 shows the breakdown by percentage of parameters; each plot is shown
(a) normalized to the 3D conv block (with a “savings” section indicating the
saved relative compute) and (b) to itself. Similarly, these gains translate to our
overall RubiksNet architecture, our gains are chiefly due to the replacement of
all spatial and spatiotemporal convolutions with a learnable shift-based operation.
We note that the full RubiksNet numbers described in the main paper (which
are relatively lower, but show significant improvement) also account for all the
extra layers in the full architecture (e.g. the fully-connected layers, which are not
replaced by RubiksShift blocks).

3D Conv 2D Conv + Temporal Shift 3D Shift
0

5

10

15

20

25

FLOPs Comparison

layer type

FL
O
Ps
 (
G
)

3D Conv 2D Conv + Temporal Shift 3D Shift
0

50

100

150

200

250

Parameters Comparison

layer type

Pa
ra
m
. 
(K
)

Fig. A2: Efficiency comparison at layer level. Our RubiksShift (3D learnable shift)
layer shows a large efficiency gain over analogous 3D convolution and Shift+2D
convolution [16] prior work. See Sec. A4.

Table A2: Runtime Latency Comparison; Block types correspond with Figure
A2. See Section A4 for details.

Block Type Runtime Latency

3D Conv 7.98ms ± 0.75ms
2D Conv + Shift (TSM) [16] 3.59ms ± 0.13ms

3D Shift (Ours) 0.90ms ± 0.12ms

Runtime/Latency. We also report latency analysis in the Table A2. We bench-
mark each layer/block type for runtime on the same GPU and hardware set-up
(single GPU, Titan Xp) and averaged over 100 trials. Our input tensor in all cases
is (N,T,C,H,W ) = (8, 8, 72, 56, 56) (batch size N is 8), and architecture blocks
are similarly controlled for same input/output channels as in our other efficiency
analysis breakdown. We observe that our 3D RubiksShift method has consistently
better runtime than prior work. Sec. 4 in our main paper contains shift analysis
at the architecture level, showing higher accuracy than prior fixed-shift [16] with
consistent global shift budget.



6 J. Fan* and S. Buch* et al.

ConY�3D
99.8%

BaWchNoUm�3D
0.213%

SaYingV
66.5%

ConY�2D
33.3%

BaWchNoUm�2D
0.213%

SaYingV
96.1%

PoinWZiVe�ConY
3.69%

BaWchNoUm�2D
0.2%

LeaUnable�ShifW
0.0128%

ConY�3D
99.8%

BaWchNoUm�3D
0.213%

ConY�2D
99.4%

BaWchNoUm�2D
0.637%

PoinWZiVe�ConY
94.5%

BaWchNoUm�2D
5.13%

LeaUnable�ShifW
0.328%

CRQY�3D BaWcKNRUP�3D SaYLQgV CRQY�2D
BaWcKNRUP�2D PRLQWZLVe�CRQY LeaUQabOe�SKLfW

3D Conv 3D Learnable Shift 2D Conv + Shift

(a)

(b)

Fig. A3: Breakdown of FLOPs by percentage for RubiksShift (Learnable 3D
Shift) against 3D Conv and 2D Conv+Shift [16] analogous blocks, controlling for
channel/input. (a) shows breakdown of FLOPs for all three blocks normalized to
the 3D conv block. The “savings” section indicates the saved relative compute.
(b) is normalized to itself. See Sec. A4.

A5 Additional Results

In this section, we report additional results that we were not able to include in
the main paper due to space. In particular, we provide additional results for our
four main datasets in the main paper, including our larger scale (Something-
Something-v2, Something-Something-v1) and smaller scale (UCF-101, HMDB-51)
datasets. We also report an additional comparison against our main baseline
(TSM[16]) on a fifth benchmark – the Kinetics dataset [14]. Note that we chose
to prioritize our analysis and model training in the main paper on the two
large-scale Something-Something benchmarks since both contain action classes
which require more complex temporal understanding.
Additional Results. We visualize additional results for the benchmarks in the
main paper in Figure A5, A6, A7. We observe that our RubiksShift model family
consistently improves over the TSM [16] model family from ICCV 2019 on the
efficiency-accuracy tradeoff by a significant margin across datasets.



RubiksNet (Supplementary Material) 7

ConY�3D
99.9%

BaWchNorm�3D
0.0999%

SaYingV
66.6%

ConY�2D
33.3%

BaWchNorm�2D
0.103%

SaYingV
96.1%

PoinWZiVe�ConY
3.7%

Learnable�ShifW
0.129%

BaWchNorm�2D
0.103%

ConY�3D
99.9%

BaWchNorm�3D
0.0999%

ConY�2D
99.7%

BaWchNorm�2D
0.31%

PoinWZiVe�ConY
94.1%

Learnable�ShifW
3.28%

BaWchNorm�2D
2.62%

CRQY�3D BaWcKNRUP�3D SaYLQgV CRQY�2D
BaWcKNRUP�2D PRLQWZLVe�CRQY LeaUQabOe�SKLfW

3D Conv 3D Learnable Shift 2D Conv + Shift

(a)

(b)

Fig. A4: Breakdown of parameters by percentage for RubiksShift (Learnable 3D
Shift) against 3D Conv and 2D Conv+Shift [16] analogous blocks, controlling for
channel/input. The “savings” section indicates the saved relative parameters. (a)
shows breakdown of parameters for all three blocks normalized to the 3D conv
block. (b) is normalized to itself. See Sec. A4.

Kinetics Comparison. We also provide additional comparison against the TSM
model [16] on Kinetics [14], as shown in Figure A7. We observe that we maintain
the consistent trend on this benchmark as well. We also highlight that in the high
efficiency regime (e.g. TSM-Small vs. RubiksNet-Small), we substantially increase
accuracy and efficiency by a wide margin (increase accuracy by 3.9 absolute
percentage point while reducing parameters by 3.1x and FLOPs by 2.2x).

A6 Additional Training Details

Reproducibility/Code Release. Please refer to our project website for our
low-level CUDA/C++ kernels as well as our higher-level PyTorch and PyTorch
C++ layer and architecture code. We’ve also included representative pre-trained
models with inference code pipeline and corresponding log files.



8 J. Fan* and S. Buch* et al.

Fig. A5: We report the Pareto curves for our method compared with prior work
[16], with size of the circle corresponding to the number of model parameters.
Results are reported as both 2-clip accuracy (left) and 1-clip accuracy (right).

Something-Something-(V2,V1). Representative hyperparameters for our Ru-
biksNet experiments on the Something-Something-V2 dataset in Figure 4: initial
learning rate 0.025 for batch size 64, distributed across 8 GPUs. We follow the
standard step-annealing scheme in the ResNet literature [6] and divide learning
rate by 10 at epoch 26 and 36. We apply dropout 0.3 only to the fully connected
layer. Weight decay is set to 10−4. After a warm-up period, the learning rate for
RubiksShift layers is set to a 1:100 ratio of the global learning rate for stability.
Gradient scaling factor Z in Eq. 9 is 0.1.

UCF101 and HMDB51. The set of tuneable hyperparameters on both of these
datasets is the same as with Something-Something, with similar values to the
representative set above; we follow pre-training protocol from prior work [16] on
Kinetics before fine-tuning on both of these datasets.



RubiksNet (Supplementary Material) 9

Fig. A6: We also show efficiency-accuracy comparison for Something-Something-
V1 (1-clip, top-1 accuracy as per prior work); for visual clarity among multiple
prior works we show analogous prior work models with a single point. TSM [16]
is our main prior work comparison from ICCV 2019, and is shown in blue.

Fig. A7: We also report the Pareto curves for our method compared with prior
work [16], with size of the circle corresponding to the number of model parameters.
Results are reported as 1-clip, top-1 accuracy. We highlight that in the high-
efficiency regime, Rubiks-Small is able to show large efficiency and accuracy gains
over its counterpart TSM-Small.

Kinetics. The Kinetics dataset contains 306k video clips and 400 action classes.
Please see Additional Results in our supplement (Section A5) for the results.
For training, we adopt similar protocols to our other two large-scale datasets
(Something V1 and V2) above (e.g. learning rate schedule, regularization, and
RubiksShift training) and provide consistent comparison with respect to the
TSM baseline [16].


