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Motivation

Video understanding ofters the potential to go beyond image-level
semantics (scenes, objects) towards event temporality + causality.

Our work re-examines a foundational question [5,6.

* What makes a video task uniquely suited for videos,

beyond what can be understood from a single image?

Our focus is on video + language, where language has the potential to

describe richer event properties and relationships in videos.

in video research:

Revisiting the “Video”
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Challenge: Standard approaches may under-represent “"image-centric” bound for video-language understanding!

Q: "Why did the person
bend the|r |<nees7

Standard approaches: 1
Select a random frame?

Average pool?
selected frame

Clearer image-level semantics

Noisy (camera motion blur, etc.)

» time

A: “"Because they are skiing”

Atemporal Probe (ATP) for Video-Language Analysis

Standard Video-Language Benchmarks
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% Overview WA propose the Atemporal Probe (ATP):

v" To analyze current standard video-language benchmarks
(stronger bound on image-centric understanding)
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v" Improve dataset design (disentangling unintended biases)
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v" Improve model design (better efficiency and accuracy)
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Our Atemporal Probe (ATP) model builds on progress in self-supervised image-language understanding [1], and learns to discretely
select a frozen image-level encoding (without using any temporal information). This encoding of a single frame is sent downstream
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— unmodified - to the final video-language understanding task (video question answering, text-to-video retrieval; e.g. [2,7]).
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Takeaways:

Video-Language Understanding
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Experiments and Analysis
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(hold even when dataset explicitly designed for temporal + causal video-language)

1. Datasets can be (surprisingly) well-addressed by image-centric understanding @+

@ 2. Video-level models may be signiticantly impacted by processing noisy frames
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Improving Model Design with ATP

ATP can improve temporal (multi-frame) model design by forwarding
semantically useful candidates to reason over (reducing noise). A combined
model with ATP achieves higher accuracy with fewer frames needed.
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Improving Dataset Design with ATP

- D ATP selected frame
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= downstream selected answer (bold = labeled answer)

: Q: How is the girl moving

around in the video?
! walking jumping
swinging up and down

Q: How do the two men play
the instrument?

I l"g ’ ' roll the handle  strum the string
hit with sticks pat with hand

ATP can help identity (multi-frame) temporally challenging
data, and is a promising tool for in-the-loop dataset design.
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