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Abstract— Policy search methods in reinforcement learning
have demonstrated success in scaling up to larger problems
beyond toy examples. However, deploying these methods on real
robots remains challenging due to the large sample complexity
required during learning and their vulnerability to malicious
intervention. We introduce Adversarially Robust Policy Learn-
ing (ARPL), an algorithm that leverages active computation
of physically-plausible adversarial examples during training
to enable robust policy learning in the source domain and
robust performance under both random and adversarial input
perturbations. We evaluate ARPL on four continuous control
tasks and show superior resilience to changes in physical
environment dynamics parameters and environment state as
compared to state-of-the-art robust policy learning methods.
Code, data, and additional experimental results are available
at: stanfordvl.github.io/ARPL

I. INTRODUCTION

Renewed research focus on policy learning methods in
reinforcement learning have enabled autonomy in many
problems considered difficult until recently, such as video
games with visual input [24], the deterministic tree search
problem in Go [33], robotic manipulation skills [19], and
locomotion tasks [20].

Imagine an autonomous robot making a delivery. Although
an all-out malicious attack can take down the robot, the robot
might also be vulnerable to more subtle adversarial attacks.
For example, a smart attacker could create a man-in-the-
middle style attack. They could make a small, imperceptible
change to the policy to get the parcel delivered to himself.
While this is a hypothetical scenario, with increasingly
pervasive autonomy in both personal and public spaces, it is
a real threat.

As we move towards deploying learned controllers on
physical systems around us, robust performance is not only
a desired property but also a design requirement to ensure
the safety of both users and the system itself. Research has
shown that a spectrum of machine learning models, including
RL algorithms, are vulnerable to malicious attacks [2, 3, 5,
15]. Recent works have studied the existence of adversarial
examples [10, 28, 34]; and showed that such instances are not
only easy to construct but are also effective against different
machine learning models trained for the same task.

While successful, policy search algorithms, such as variants
of Q-Learning [24] and Policy Gradient methods [20, 32], are
highly data intensive due to the large amount of experience
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Fig. 1: A walker-2d agent trained on a fixed set of parameters
would be sensitive to noises in dynamics, process, and observation.
We propose a robust training method, ARPL, based on adversarial
examples to enhance the robustness of our agent against uncertainty.

needed to train the agent. Furthermore, complex non-linear
function approximators such as deep neural networks can
worsen the data dependence. Hence, a naïve approach that
utilizes joint training over an ensemble of domains to achieve
robustness can quickly become intractable.

Moreover, model-free algorithms require black-box access
to a simulator for training. This is often a limitation of
policy learning for physical systems. A natural solution to this
problem is to train on a source simulator that resembles the
target domain with a bounded model mismatch. Although this
is a reasonable approach, systematic discrepancies between
the source and the target models can result in controller
instability. When the target domain is a complex dynamical
system, policy learning methods that use gradient descent
based optimization procedures often yield marginally stable
solutions that are not robust to modeling errors and may fail
on a target with a minor model mismatch.

This paper is a step towards addressing the problem of
adversarial attacks against autonomous agents in physical
domains and the problem of model mismatch when training
policies in a simulated domain but deploying the learned
policies in a physical target domain. The key intuition of
this study is that – adversarial examples can be used to
actively choose perturbations during training in the source
domain. This procedure exhibits robustness to both modeling
errors and adversarial perturbations on the target domain. In
particular, we explore training in simulated continuous control
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tasks for evaluation across varied simulated target domains.
We analyze the effect of perturbations on the performance
via three kinds of modeling errors: dynamics noise, process
noise, and observation noise.
Summary of Contributions:
1) We demonstrate that Deep RL policies are susceptible to
both adversarial perturbations and model-mismatch errors.

2) We propose a method to synthesize physically-plausible
adversarial perturbations for a white-box model. Further, we
present Adversarially Robust Policy Learning (ARPL), a
method to use actively chosen adversarial perturbations for
robust policy training.

3) We also relate the distance to uncontrollability in simple
dynamical systems to control inputs, hence providing a po-
tential justification for ARPL leading to improved robustness
in more complex environments where analytic calculations
are impractical.

4) We extensively evaluate our method in 4 simulated
environments and observe that training with ARPL leads to
improved resistance to changes in observations and system
dynamics.

II. RELATED WORK AND BACKGROUND

A. Deep Reinforcement Learning

Recent interest in reinforcement learning (RL) has resulted
in the resurgence of many classical algorithms that now use
neural network function approximators, enabling problems
with larger state and action spaces [20, 23, 24]. However,
these methods are often sample-inefficient, requiring extensive
interaction with the environment. Policy rollouts in target
domains that involve real world robot control are expensive.
As a result, these methods are used primarily in simulated
domains. Despite recent results on robot RL [19, 31], the data
requirement for these studies has been very large, prompting
cynicism towards the use of these methods in real world tasks
with dynamic motor skills.

A common approach to circumvent the sample complexity
problem of model-free methods is to use model-based RL [16].
Simulated models approximate the target real-world domain
and provide a computationally cheap way to learn policies.
However, the main challenge in a source to target transfer is
the systematic discrepancy between the two domains [35].

B. Transfer in Reinforcement Learning

RL algorithms that can achieve transfer across domains
despite modeling errors are highly desirable due to the
inherent differences between simulators and real-world tasks.
Consequently, the development of these algorithms is an
important and active area of current research. The transfer
problem has been examined from different perspectives, such
as changing dynamics [13, 29, 36], varying targets [39], and
multiple tasks [7, 30]. Taylor et al. provide an excellent trea-
tise on the transfer learning problem [35]. Many approaches
focused on reducing the number of rollouts performed on a
physical robot by alternating between policy improvement in
simulation and physical rollouts [1, 18]. After each physical
rollout, a time-dependent term is added to the dynamics

to account for unmodeled error. However, this approach is
susceptible to failure due to potential robustness issues with
the initial transfer. There are no guarantees when the policy
is deployed for the first few physical rollouts, and the system
could sustain or cause damage before the online learning
model converges.

In our work, we show that using actively chosen pertur-
bations of the environment dynamics and observations can
result in a more robust policy in the target domain.

C. Adversarial Examples in Supervised Learning

Another concern that is increasingly taking center-stage
is resilience and robustness of the learned policies when
deployed on critical systems. Machine learning researchers
have been exploring the effect of adversarial attacks in
general machine learning models [2] and investigating both
the robustness and security of the models. Sequential decision
making is inherently vulnerable because of the ability of an
adversary to intervene through changing the observations
or the underlying dynamics in a system [5]. Szegedy et
al. [34] introduced the notion of using visually-imperceptible
perturbations on images at test-time to cause misclassification
in Deep Neural Network (DNN) models used in computer
vision applications. This has kickstarted research in both the
detection and synthesis of adversarial examples [10, 17, 25,
28], and efforts to safeguard against such malicious attacks [8,
12, 26]. It has since been discovered that adversarial inputs
for computer vision models can be computed with minimal
compute effort [10], can be applied to physical print-outs
of pictures [17], and can be found almost universally for
any given machine learning model [25]. Furthermore, pre-
designed adversarial attacks to reliably quantify the robustness
of these classifiers have been explored in [28] and [26].

Additionally, it is worth noting that a majority of the studies
in adversarial perturbations have been for supervised learning
models. Recent works by Behzadan et al. [3] and Huang
et al. [15] have illustrated the existence of perturbations
in RL. The study in [3] shows that perturbations can be
constructed to prevent training convergence, and Huang et
al. [15] demonstrate the ability of an adversary to interfere
with the policy operation during test time.

D. Robust and Risk-Sensitive Control

Robust control with respect to modeling errors has been
widely studied in control theory. An excellent overview of
methods is provided in the book by Green & Limebeer [11]. In
the problem of robust transfer, we are interested in parametric
uncertainty between source and target models. Nilim et
al. [27] and Mastin et al. [22] have produced bounds on
the performance of transfer in the presence of bounded
disturbances in dynamics. Risk-sensitive and safe RL methods
have been proposed to handle uncertainty while enabling
safety, as reviewed in [9]. These methods model belief
priors over the target domain and preserve safety guarantees
similar to robust control. However scaling both robust control
methods and risk-sensitive RL methods beyond very simple
examples has been a challenge.



Recent studies on robust policy learning for transfer across
domains have adapted ideas from robust control and risk-
sensitive RL to propose simplified sampling-based methods
for training. In particular, Rajeswaran et al. [29] propose a
method of sampling dynamics parameters over a prior during
training to improve policy robustness to a similar but unseen
target setting. Further, Yu et al. [38] propose a similar robust
policy learning method through adding parameters to the
system state and with the additional option of performing an
online estimate of dynamics.

E. Controllability and Stability

Controllability and stability analysis forms an important
part of analytical controller design. Mailybaev et al. [21] study
how far a system is from the nearest uncontrollable state.
He [14] examines the problem of calculating the distance to
uncontrollability and the distance to instability for a given
controller as a function of the perturbation to the system.
Boyce [6] proposes a method to calculate this distance through
linear matrix inequalities. In Section V, we analyze how
the policies resulting from ARPL increase the distance to
uncontrollability as compared to a vanilla policy under the
same state-action constraints.

This work is, to the best of our knowledge, one of the
first studies to examine physically plausible perturbations to
observations and systematic shifts in environment dynamics
that result in deteriorated policy performance. Furthermore,
we propose an algorithm to leverage adversarial perturbations
to train policies that are robust to a wide range of perturbations
in dynamics and observations.

III. PRELIMINARIES

A. Reinforcement Learning: Policy Optimization

Consider an infinite horizon discounted Markov Deci-
sion Process (M) defined as a tuple of the form M :
〈S,A,T (·, ·, ·),R(·, ·),γ〉. Here S and A represent the state
and action space for the agent. T (·, ·, ·) is an transition
function T : S×A×S→R that captures the state transition
dynamics in the environment. R : S×A→ R. is the reward
function that maps a state-action tuple to a scalar, and γ ∈ [0,1]
is the discount factor to allow devaluation of future reward.
The goal is to find a policy π : S →A, the maximizes the
expected cumulative reward η(π) over the choice of policy:

π
∗(s) = argmax

π

η(π) = argmax
π

E
[ ∞∑

t=0

γ
trt

]
Now to perform policy gradient optimization, we can define

the gradient of the cumulative reward with respect to current
policy parameters θ over an observed trajectory of state-action
pairs τ and the corresponding return over the trajectory R(τ),

η(π) =E
[ ∞∑

t=0

γ
trt

]
=
∑

τ

T (τ;θ)R(τ),

∇θ η(π) =Eτ∼T
[
∇θ T (τ;θ)R(τ)

]
We use sampled policy gradient to perform gradient-

based parameter update over the function class of policies π

parametrized through θ . In this work, we train all our agents
using Trust Region Policy Optimization [32]. TRPO is an
on-policy batch learning algorithm which uses a constrained
policy gradient update to perform policy improvement, and
is state-of-the-art for continuous control.

B. Adversarial Perturbation in Deep Neural Networks

Szegedy et al. [34] discovered that deep learning models
are highly vulnerable to adversarial examples. Furthermore,
these adversarial examples exhibit a remarkable generalization
property - a variety of models with different parametrizations
are often fooled by the same adversarial example, even when
these models are trained on different subsets of the training
data.

Methods of creating adversarial examples rely upon max-
imizing the prediction error, such that the perturbation is
bounded. In image classification, a common objective is to
perturb an image by a small, imperceptible amount such
that its prediction class changes. In reinforcement learning,
the objective is to misguide the policy to output incorrect
actions, while minimizing the change in either the input state,
the dynamics model, or the observation model. One of the
most prevalent methods for generating adversarial examples
is the Fast Gradient Sign Method (FGSM) by Goodfellow et
al. [10]. FGSM offers computationally efficiency at the cost
of a slight decrease in attack success rate.

FGSM focuses on adversarial perturbations of an image
input where the change in each pixel is limited by ε and
makes a linear approximation of the Deep Neural Network,
resulting in the following perturbation

δ = ε sign
(
∇sη(πθ (s))

)
(FGSM) (1)

where η is a loss function over the policy π , which is
parametrized by parameters θ .

IV. ADVERSARIALLY ROBUST POLICY LEARNING

This section will first describe the various threat models
that can be used to generate perturbations, and then detail
the ARPL algorithm that leverages these perturbations during
policy training for robust performance.

A. Physically Plausible Threat Model

Consider a physical dynamical system:

st+1 = f (st ,at ; µ)+ν (Dynamics)

ot =g(st)+ω (Observation)
(2)

where the Dynamics model updates the state s with action
a according to a state transition function f , parametrized by
dynamics parameters µ (such as mass), and process noise
ν . The Observation model maps the current state s to
the observed state o with the observation function g and
observation noise ω .

To generate a perturbation on a state s we use an
isometrically scaled version of the full gradient

δ = ε ∇sη(πθ (s)) (ARPL) (3)



where η is a loss function over the policy π , which
is parametrized by parameters θ , and ε is a scalar that
corresponds to the perturbation strength. Notice that we
use the full gradient to generate the perturbation instead
of using the popular FGSM. FGSM is primarily designed for
images where the state is high dimensional and the dimensions
are approximately IID. However, for dynamical models, the
dimensions in the state space correspond to different physical
quantities; hence a fixed unit step size can result in scaling
issues.
Type of Perturbation: A malicious adversary can change
any of the three quantities µ,ν , or ω . A change in µ can
be equated to dynamics noise, i.e. uncertainty in physical
parameters such as mass, friction, and inertia, while ν and
ω correspond to direct perturbations of state and observation.
This contrasts with prior work in [3, 15] that only examine
perturbations to the current state in image space, i.e. ν , which
is often not physically plausible.

We perform perturbations that correspond to process noise
ν by adding gradient based perturbation to the state of the
system. Similarly, we add observation noise ω by changing
the observation while preserving the system state. Adversarial
perturbation on dynamics noise through agent parameters µ

requires state augmentation s̄ = [s,µ]T , and only the latter
component of the gradient is used ∇s̄ = [0,∇µ ].

We maintain physical plausibility of all perturbations
through the projection of the perturbed state to its respective
domain, i.e. the state space for s and bounded variation in
µ ∈ [0.5µ0,1.5µ0], where µ0 is nominal (source) dynamics.

Modes of Perturbation: We build two threat modes: Adver-
sarial and Random. For noise in states (ν) and observation
(ω), adversarial states are calculated using δ , while random
perturbations are uniformly sampled from [−δ ,δ ]. For dynam-
ics noise, µ is set to be a uniform sample in [0.5µ0,1.5µ0]
at each time iteration. For adversarial dynamics noise, we
first get a random sample as before, then add a gradient δ

evaluated at µadv ∼U(0.5µ0,1.5µ0).

Frequency of Perturbation: The parameter φ ∈ [0,1] de-
termines the frequency of applying adversarial (or random)
updates. At each time step, an update is applied with prob.
Bernoulli(φ). When φ = 0, only the initial time step is
perturbed in each episode.

B. Robust Training with Adversarial Perturbations

Policy Optimization methods utilize batch trajectory sam-
pling for gradient estimates as in [32]. ARPL operates
by modifying the trajectory rollouts to include trajectory
perturbation. This procedure is outlined in Algorithm 1. In
the most general setting, at each iteration, a trajectory is rolled
out, and an adversarial perturbation is added to the model
with probability φ at each time step along the trajectory.
The exact operation in add_perturbation depends on
the choice of threat model, and φ controls the frequency of
perturbation. A policy gradient update is made after rolling
out a batch of k trajectories. We used a curriculum learning
approach [4] in order to train our agents on increasing φ

Algorithm 1: Adversarially Robust Policy Learning
Data: hyperparamaters:φ ,ε,k

1 Initialize π0
2 foreach i = 0,1,2, . . . , max_iter do

// Perform k-Batch Rollout(s) with Adv. Perturb.

3 foreach t = 1, . . . ,Tk,∀k do
4 Sample trajectory with policy π(θi): τik = {st ,at}Tk−1

t=0
5 Compute adv. perturb. δ = ε

(
∇st η(πθi)

)
6 add_perturbation(δ ) with prob. Bernoulli(φ)

// Batch Update to Policy Network

7 θi+1← policy_grad(θi,{τi1, ...,τik})
Result: Robust Policy π

values. This was necessary to help our policies converge - the
agent first learns to perform well in the nominal environment,
and then perturbations are added with higher frequency as
training progresses.

ARPL achieves robustness by adding adversarial model
variation in each rollout. However, training on adversarial
examples is different from other data augmentation schemes.
In supervised models, the data is augmented with a priori
transformations such as translation and rotation which are
expected to occur in the test set. By contrast, adversarial
perturbations rely on the online generation of scenarios
that not only expose flaws in the ways that the agent
conceptualizes its decision function, but also are likely to
occur naturally.

V. ROBUSTNESS AS DISTANCE TO UNCONTROLLABILTY

A dynamical system is said to be controllable if for every
state x (previously called state s), there exists a sequence of
control inputs that can transfer the system to state x. Model
perturbations can turn a controllable dynamical system into
one that is uncontrollable. For a controllable linear system
ẋ = Ax+Bu with state x and control u (previously called
action a), and matrices A and B of appropriate dimension,
the distance to uncontrollability duc can be characterized by
the smallest singular value of the matrix [A−λ I,B],

duc = min
λ

σmin
(
[A−λ I,B]

)
(4)

Consider an infinite-horizon time-invariant Linear
Quadratic Regulator (with standard notation). The form
of the optimal controller is u = −Kx. Here K is given by
K = R−1(BT P), and P is the solution of a Continuous-time
Algebraic Riccati Equation (CARE):

AT P+A− (PB)R−1(BT P)+Q = 0

Proposition 1: Let (A;B) be controllable, (A;Q) be ob-
servable, P be a positive definite solution to CARE, with Q
positive semi-definite, and R positive definite. Then, we have:

duc ≥
λmin(Q)

||P||
√

1+ λmin(Q)
λmin(R)

)
(5)

where λmin(·) denotes the smallest eigenvalue. We omit the
proof and refer the reader to Theorem 2 of the analysis in
[14], from which the above can be derived.



Proposition 1 implies that the distance to uncontrollabil-
ity under perturbations to the matrices (A;B) is inversely
proportional to the matrix norm of P, and by extension the
total control effort. Intuitively, if the control approximately
saturated in order to achieve or maintain stability, then the
system can be destabilized by small perturbations to the
model, and vice-versa. While this result is hard to derive
for non-linear systems, we can use this result as a guideline
to compare robustness of controllers under the same set of
perturbations on the same task by directly comparing the
control effort needed to achieve stability. An experiment
along this line is presented in Section VI-C.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

We evaluated our proposed ARPL algorithm on four
continuous control tasks – Inverted Pendulum, Half Cheetah,
Hopper, and Walker using the MuJoCo physics simulator [37].
These tasks involve complex non-linear dynamics and direct
torque control on the actuated joints. Under-actuation and
discontinuous contact render these tasks a challenging bench-
mark for reinforcement learning methods. To understand our
agent’s robustness with physical plausibility, we use a low-
dimensional state representation that captures the joint angles
and velocities in these tasks. In such cases, perturbations
on the state vectors naturally lead to a new state that is
physically realizable in the environments. The objective of
the Inverted Pendulum task is to keep a pole upright by
applying a force (control) to the base of the pole. The agent
keeps accumulating reward while the pole is upright and fails
the task if the pole tilts by too much. The objective of the
Half Cheetah, Hopper, and Walker tasks is to apply torque
control to the joints in order to move right as fast as possible
until the body falls over.

We use the state-of-the-art trust region policy optimization
(TRPO) method [32] to learn a stochastic policy using
neural networks. The policy is parametrized by a Gaussian
distribution, where its mean is predicted by a network that
takes a state as input and consists of two hidden layers
with 64 units per layer, and tanh as the non-linearity, and
the standard deviation is an additional learned parameter
that is independent of the state. For the loss function η

that ARPL uses to generate adversarial perturbations, we
use η(µθ ) = ‖µθ‖2

2, where µθ is the output of the mean
network with parameters θ . We used this loss function to
create perturbations that would move the state or dynamics
such that the policy is encouraged to apply actions with larger
norms, which can lead to instability.

As mentioned in Sec. IV-B, we used a curriculum learning
approach to train our agents on increasing perturbation
frequency (φ ). All agents were trained for 2000 iterations
- the large number of iterations was necessary to guarantee
convergence for curriculum learning. We define the curriculum
by uniformly increasing φ between 0 and φmax. For process
noise perturbations, we set φmax = 0.1, and for dynamics
noise perturbations we set φmax = 0.5. We update the cur-
riculum every 200 iterations. Note that we omitted results

on observation noise perturbations due to space constraints.
It is likely that observation noise will become much more
important in the context of real world robot experiments.

B. Improving Agent Robustness using Adversarial Training

Here we evaluate the effectiveness of our robust training
method proposed in Sec. IV-B. For every agent type, we
trained 15 agents and selected the agent with the best learning
curve. This is necessary since our method also tends to
produce agents with poor performance due to the high
variance of the training process. Nominal agents were trained
with vanilla TRPO, random agents were trained using ARPL
with random perturbations, and adversarial agents were trained
using ARPL with adversarial perturbations. These results are
for two sets of agents - one that were trained on process
noise and another that were trained on dynamics noise.

Figures 2(a) and 2(b) show the effect of process noise
in the Inverted Pendulum task. As Fig. 2(a) demonstrates,
the nominal agent is highly susceptible to process noise,
but both the random and adversarial agents are more robust.
It is interesting to note that the adversarial agent performs
better in the region where it was trained, but the random
agent seems to generalize outside of that region. However,
Fig. 2(b) shows that the adversarial agent is incredibly robust
to random process noise, much more so than the random
agent. This is a very promising result since random process
noise perturbations are much more likely to be encountered
in practice (for example, on a robot, with noise in sensor
measurements).

Figures 3(a) and 3(b) show the effect of dynamics noise
in the Inverted Pendulum task. We see that the adversarial
agent is robust across both adversarial and random dynamics
perturbations across all perturbation frequencies, while the
random agent is significantly more robust than the nominal
agent.

Figures 4(a) and 4(b) show the effect of dynamics noise in
the Walker task. We see that the adversarial and random agents
are robust across both adversarial and random dynamics
perturbations across all perturbation frequencies.

Figures 5(a)-(d) show the agents’ performance under
different combinations of dynamics configurations. The center
of the grid corresponds to the original values of the dynamics
parameters. We can see that nominal performance tends to
suffer farther from the center of the grid, as expected, while
both random and adversarial agents are robust to the changed
mass and friction values. In general, the adversarial agents
tend to obtain higher reward, but the random agents are
still much more robust than the nominal agents. It is not
clear whether the use of adversarial training with respect
to dynamics noise results in substantial benefits. Additional
investigation is necessary.

C. Robustness as Controllability

We also investigated the control effort exerted by the
dynamics noise agents on the nominal environments to test
our hypothesis from Section V. We define control effort as
the mean square control norm exerted by an agent over an



Fig. 2: Inverted Pendulum - A comparison of agent performance with respect to Adversarial and Random Process Noise. The baseline
performance indicates how each agent performs in an unperturbed environment (all three perform optimally here). Here, ε = 0.01, and we
evaluated agent performance as we increased the perturbation frequency. (a) Adversarial Process Noise: We note that the adversarial
agent does the best in the region where it was trained, but the random agent is more resistant in the higher frequency regime. (b)Random
Process Noise: We note that the adversarial agent is robust across all perturbation frequencies while the random agent suffers with higher
frequency noise.

Fig. 3: Inverted Pendulum - A comparison of agent performance with respect to Adversarial and Random Dynamics Noise. The baseline
performance indicates how each agent performs in an unperturbed environment (all three perform optimally here). Here, ε = 10.0, and we
evaluated agent performance as we increased the perturbation frequency. We note that the adversarial agent is robust across all perturbation
frequencies both for (a) Adversarial Dynamics Noise and (b) Random Dynamics Noise.

Fig. 4: Walker - A comparison of agent performance with respect to Adversarial and Random Dynamics Noise. Here, ε = 10.0, and we
evaluated agent performance as we increased the perturbation frequency. The baseline performance indicates how each agent performs
in an unperturbed environment. We note that the both adversarial and random agent are robust across all perturbation frequencies and
maintain zero noise performance in case of both (a) Adversarial Dynamics Noise and (b) Random Dynamics Noise.

episode. The results in Table I for the Inverted Pendulum
and Walker tasks support our hypothesis that the adversarial
agents are more robust because they exert less control effort
than the nominal policy. However, the results for the Half
Cheetah and Hopper tasks demonstrate that there are other
factors besides control effort that determine policy robustness.

VII. DISCUSSION AND FUTURE WORK

We motivated and presented ARPL, an algorithm for
using adversarial example during the training of RL agents
to make them more robust to changes in the environment.
We trained and evaluated policies on 4 continuous control
MuJoCo tasks, and showed that agents trained using vanilla
TRPO are vulnerable to changes in the environment state



Fig. 5: Policy robustness of dynamics noise agents with respect to various dynamics parameters. Each plot is a heat map that demonstrates
the performance of each agent over different environment dynamics. Every grid point corresponds to a particular set of environment
dynamics, and darker colors correspond to higher reward. Results were averaged over 100 rollouts. The plots demonstrate that the random
and adversarial agents are much more robust to different environment dynamics than the nominal agents.

TABLE I: Comparison of average control effort per rollout across the
agents trained with dynamics noise. Results were averaged across
100 rollouts.

Agent Type Nominal Random Adversarial
Inverted Pendulum 1.413 0.028 0.015
Walker 15.162 9.247 8.749
Half Cheetah 5.613 4.492 5.903
Hopper 2.152 2.637 4.608

and dynamics. We demonstrated that using ARPL with both
random and adversarial dynamics noise leads to policies that
are robust with respect to the environment dynamics. We
also demonstrated that using ARPL to train with random and
adversarial process noise leads to agents that are robust to
noise in the environment state.

There are several aspects of this work that we will
investigate in the future. First, we want to investigate the

use of perturbations with respect to different loss functions
over the policy network. This could include using modified
policy gradients with respect to the states and using numerical
gradients to estimate the reward gradient with respect to the
state. We also want to investigate the effect of observation
noise further, as well as different forms of random process
noise. We want to look into ways to compute dynamics
noise perturbations without state augmentation, since this
information is not typically available in the real world. This
might also lead to more differentiation between random and
adversarial dynamics noise agents. Additionally, the agents
trained by ARPL demonstrated incredibly high variance in
performance (hence why we compared results across the
best agents). We want to investigate methods of variance



reduction. We would also like to develop a theoretically
sound justification for ARPL. Finally, we want to test an
ARPL policy on a robot and investigate the robustness of the
policy.
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